Detecting Microplastics in Human Placenta tissue with Pyrolysis-GC-MS

Global production of plastic has resulted in the massive release of nano- and micro-plastics. Microplastics have found their way into humans, and scientists are developing a new methods to detect them. In one study, scientists found microplastics present in all 62 placentas tested from people who had recently given birth. They found various types of plastics, including polyethylene, PVC, and nylon.

The team’s methodology included saponification and ultracentrifugation to extract solid material from human placental tissue samples. They used highly specific and quantitative analysis of plastic with pyrolysis-gas chromatography and mass spectroscopy (Py-GC-MS). Placenta tissues were analyzed with fluorescence microscopy and automated particle count, which showed presence of micro-sized particles but not nano sized particles. Compared to other methodologies and tools, PY-GC-MS detected microplastics in all placenta samples.

The data that Py-GC-MS shows advancements in unbiased quantitative resolution and its application to detect microplastics in human placenta tissue samples. This method, with clinical data, could be essential to understanding the potential impacts of microplastics on pregnancy outcomes.

Scientists review pregnant peoples’ exposure to chemicals and the effects on their health, finding that pregnancy can heighten a person’s susceptibility to environmental chemicals and health risks.

Abstract: Pregnancy is a unique period when biological changes can increase sensitivity to chemical exposures. Pregnant women are exposed to multiple environmental chemicals via air, food, water, and consumer products, including flame retardants, plasticizers, and pesticides. Lead exposure increases risk of pregnancy-induced hypertensive disorders, although women’s health risks are poorly characterized for most chemicals. Research on prenatal exposures has focused on fetal outcomes and less on maternal outcomes. We reviewed epidemiologic literature on chemical exposures during pregnancy and three maternal outcomes: preeclampsia, gestational diabetes, and breast cancer. We found that pregnancy can heighten susceptibility to environmental chemicals and women’s health risks, although variations in study design and exposure assessment limited study comparability. Future research should include pregnancy as a critical period for women’s health. Incorporating biomarkers of exposure and effect, deliberate timing and method of measurement, and consistent adjustment of potential confounders would strengthen research on the exposome and women’s health.