Temporal trends in microplastic accumulation in placentas from pregnancies in Hawaiʻi

Scientists find a “disturbing increase” in microplastics found in human placentas over the 15 year period from 2006 to 2021. They also observed hormone-disrupting and health-harming phthalates and bisphenol plastic-additive chemicals in the samples.

  • -In 2006, 6 of the 10 placentas contained microplastics.
  • -In 2013, microplastics were found in 9 of the 10 placentas.
  • -In 2021, researchers found microplastics in all 10 placentas.”

Abstract: Microplastics are created for commercial use, are shed from textiles, or result from the breakdown of larger plastic items. Recent reports have shown that microplastics accumulate in human tissues and may have adverse health consequences. Currently, there are no standardized environmental monitoring systems to track microplastic accumulation within human tissues. Using Raman spectroscopy, we investigated the temporal exposures to plastic pollution in Hawaiʻi and noted a significant increase in the accumulation of microplastics in discarded placentas over the past 15 years, with changes in the size and chemical composition of the polymers. These findings provide a rare insight into the vulnerability and sensitivity of Pacific Island residents to plastic pollution and illustrate how discarded human tissues can be used as an innovative environmental plastic pollution monitoring system.

Researchers find that there are at least 150 chemicals that leach into drinks, including water, from single-use plastic bottles. At least 18 of those chemicals were found at levels that exceed EU chemical regulations.

Abstract: Chemicals can migrate from polyethylene terephthalate (PET) drink bottles to their content and recycling processes may concentrate or introduce new chemicals to the PET value chain. Therefore, even though recycling PET bottles is key in reducing plastic pollution, it may raise concerns about safety and quality. This study provides a systematic evidence map of the food contact chemicals (FCCs) that migrate from PET drink bottles aiming to identify challenges in closing the plastic packaging loop. The migration potential of 193 FCCs has been investigated across the PET drink bottles lifecycle, of which 150 have been detected to migrate from PET bottles into food simulants/food samples. The study reveals that much research has focused on the migration of antimony (Sb), acetaldehyde and some well-known endocrine-disrupting chemicals (EDCs). It indicates and discusses the key influential factors on FCCs migration, such as physical characteristics and geographical origin of PET bottles, storage conditions, and reprocessing efficiency . Although, safety and quality implications arising from the recycling of PET bottles remain underexplored, the higher migration of Sb and Bishphenol A has been reported in recycled (rPET) compared to virgin PET. This is attributed to multiple contamination sources and the variability in the collection, sorting, and decontamination efficiency. Better collaboration among stakeholders across the entire PET bottles lifecycle is needed to ensure sustainable resource management and food contact safety of rPET.

Experts review the known endocrine-disrupting impacts of micro- and nanoplastics on mammals. Studies show numerous harmful health impacts from plastic particle exposure.

Abstract: Over the years, the vast expansion of plastic manufacturing has dramatically increased the environmental impact of microplastics [MPs] and nanoplastics [NPs], making them a threat to marine and terrestrial biota because they contain endocrine disrupting chemicals [EDCs] and other harmful compounds. MPs and NPs have deleteriouse impacts on mammalian endocrine components such as hypothalamus, pituitary, thyroid, adrenal, testes, and ovaries. MPs and NPs absorb and act as a transport medium for harmful chemicals such as bisphenols, phthalates, polybrominated diphenyl ether, polychlorinated biphenyl ether, organotin, perfluorinated compounds, dioxins, polycyclic aromatic hydrocarbons, organic contaminants, and heavy metals, which are commonly used as additives in plastic production. As the EDCs are not covalently bonded to plastics, they can easily leach into milk, water, and other liquids affecting the endocrine system of mammals upon exposure. The toxicity induced by MPs and NPs is size-dependent, as smaller particles have better absorption capacity and larger surface area, releasing more EDC and toxic chemicals. Various EDCs contained or carried by MPs and NPs share structural similarities with specific hormone receptors; hence they interfere with normal hormone receptors, altering the hormonal action of the endocrine glands. This review demonstrates size-dependent MPs’ bioaccumulation, distribution, and translocation with potential hazards to the endocrine gland. We reviewed that MPs and NPs disrupt hypothalamic-pituitary axes, including the hypothalamic-pituitary-thyroid/adrenal/testicular/ovarian axis leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, decreased sperm quality, and immunotoxicity. The direct consequences of MPs and NPs on the thyroid, testis, and ovaries are documented. Still, studies need to be carried out to identify the direct effects of MPs and NPs on the hypothalamus, pituitary, and adrenal glands.

Scientists compare the microplastics content of lettuce plants cultivated in Lisbon urban gardens and rural areas, as well as samples bought in supermarkets. All washed leaves showed presence of microplastics, though lettuce grown in urban gardens from high traffic areas showed the highest microplastic levels.

Abstract: Urban vegetable gardens are very often a feature of cities that want to offer their citizens a more sustainable lifestyle by producing their own food products. However, cities can have significant pollution levels (or pollution hotspots) due to specific sources of pollution, such as traffic. Among the various pollutants, microplastics (MPs) are emerging as a consensual concern due to the awareness of the environmental contamination, their bioaccumulation potential and human intake, and, consequently unknown human health impacts. The present study compared the content of MPs in lettuce plants cultivated in Lisbon urban gardens with those cultivated in a rural area, as well as samples bought in supermarkets. Microplastics were detected in all washed leaves, with mean levels ranging from 6.3 ± 6.2 to 29.4 ± 18.2 MPs/g. Lettuce grown in urban gardens from areas with high traffic density showed higher MPs levels. Weak positive Spearman’s rank correlations were found between MPs content and concentrations of Cu and S (determined by Particle Induced X-Ray Emission, PIXE), suggesting a possible role of traffic contribution to MPs levels, as both elements are considered traffic-source tracers. These results contribute to shed light on the MP contamination of vegetables grown in such urban environments, that may represent a potential MP exposure route through the dietary intake, corresponding to a 70% increase in annual MP intake compared to lettuces bought in supermarkets.

Fertilizers and pesticides are interdependent inputs to a destructive food production model that is contributing to catastrophic biodiversity collapse, toxic pollution, and the violation of human rights. But there is an often-overlooked dimension of the threat posed by these agrochemicals: their fossil fuel origins. Synthetic nitrogen fertilizer and pesticides are fossil fuels in another form, making them an underrecognized but significant driver of the climate crisis. Further, the close ties between agrochemicals and fossil fuels mean that industrial food production is vulnerable to the volatility inherent in oil and gas markets, as starkly illustrated by the 2022 market shocks in food, fuel, and fertilizer prices. 

For over a decade, the fossil fuel industry has been betting on petrochemicals (namely, plastics) to maintain profits as the world moves away from oil and gas as fuels. Fossils, Fertilizers, and False Solutions exposes how fossil fuel and fossil fertilizer companies are aligning to pursue a new escape hatch: one that purports to solve the climate challenge of hydrocarbon combustion by using the hydrogen and managing the carbon. 

The fertilizer industry, and the processes it already uses to make its products, hold the keys to this new model. Largely unnoticed by media and civil society watchdogs, oil, gas, and agrochemical companies are partnering on a rapidly growing wave of new projects that would use carbon capture and storage (CCS) to produce fossil gas-based “blue” ammonia (and its “blue” hydrogen precursor), not only as a critical fertilizer input, but as a combustible fuel for transport and energy. Through such approaches, the fertilizer and fossil fuel companies seek to greenwash their polluting business, cash in on generous new subsidies for CCS, and access new markets as “clean energy companies.” 

This report begins by summarizing synthetic fertilizer market trends, describing how chemical fertilizer is tied to fossil fuels through feedstocks, examining the 2022 food and fertilizer market disruptions, and calling attention to the ecological and climate impacts of synthetic fertilizers. It then explores how the fertilizer industry and fossil fuel producers are capitalizing on the climate crisis to open new avenues for profit and production by laundering their emissions through the chemicals and agriculture sector. 

The corporate-controlled, input-reliant model of industrial agriculture is in need of a profound transformation to resilient, regenerative models that enhance food and energy sovereignty so that the ecosystems and communities that depend on them can thrive. The need for such a fundamental transformation is as urgent and as compelling as the global energy transition, the transition away from plastic pollution, and the transition to a world free of toxic chemicals. Those transitions can only be achieved if the common roadblock is removed: a fossil-fueled system that has captured politics and is burning, polluting, and poisoning people and the planet. At a time of surging fossil fuel, fertilizer, and food prices, and with the escalating climate crisis as a backdrop, the case for transitioning away from fossil fertilizer and from fossil fuels altogether has never been clearer.

Today, Canada produces nearly 2.4 million tonnes of plastic packaging waste each year. And that number keeps growing dramatically. Typically, this plastic is used just once, sometimes for minutes. But it lasts for centuries in the environment, where it harms oceans, ecosystems and life itself.

Oceana Canada’s roadmap provides an evidence-based guide to eliminating one-third of our country’s plastic packaging. By implementing the recommended interventions, Canada can prevent the generation of nearly nine million tonnes of single-use plastic by 2040.